
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ABSTRACT 

 
A nonlinear time series approach is presented to detect damage in systems by 

using a state-space reconstruction to infer the geometrical structure of a deterministic 
dynamical system from observed time series response at multiple locations. The 
unique contribution of this approach is using a Multivariate Autoregressive (MAR) 
model of a baseline condition to predict the state space, where the model encodes the 
embedding vectors rather than scalar time series. A hypothesis test is established that 
the MAR model will fail to predict future response if damage is present in the test 
condition, and this test is investigated for robustness in the context of operational and 
environmental variability. The applicability of this approach is demonstrated using 
acceleration time series from a base-excited 3-story frame structure. 
 
 
INTRODUCTION 
 

Structural Health Monitoring (SHM) is the process of implementing a damage 
detection strategy for aerospace, civil, and mechanical systems. The general concept is 
typically one rooted in some (very generalized) form of pattern recognition, whereby 
hypothesis tests or generalized regressions are established between features extracted 
from measured data sets and some form of model or class of models, whether 
completely data-driven, physics-based, or a combination thereof. 

One class of approaches in this paradigm has been rooted in state-space 
reconstruction, borrowed from the dynamical systems field. The time evolution of any 
system occurs in its state space. Under a given input, a trajectory will typically evolve 
towards a subset of the state space (the attractor), which has invariant properties [1]. 
Because one rarely has the ability to measure all the variables needed to describe the 
dynamics of a typical system, recourse is made to the so-called embedology theorems, 
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which allow for qualitative reconstruction of state space from discrete measured data 
in a way that preserves all dynamic invariants [2]. Researchers have begun to exploit 
this reconstructed state space as a source for feature extraction in various SHM 
applications [3]. In this paper, a MAR model is formed on the reconstructed baseline 
dynamics of a system to predict the baseline state space, where the embedding vectors 
comprise the multiple variates that the MAR is trained to predict. This approach 
assumes that damage will change significantly the baseline trajectory of the dynamical 
system, and consequently, the MAR model with parameters estimated from the 
baseline system will fail to predict the damaged system response. This approach is 
tested using uni- and multi-variate embeddings. Even though a multivariate 
embedding approach destroys localization information associated with each discrete 
sensor response, it takes into account all available sensor network information 
simultaneously to produce a low-dimensional feature set for discrimination that 
encapsulates the full observation space. 

The applicability of this approach is demonstrated using acceleration time series 
from a base-excited 3-story frame structure tested in laboratory environment. Damage 
is simulated through nonlinear effects introduced by a bumper mechanism that 
simulates a repetitive, impact-type nonlinearity. The nonlinearities are intended to be a 
small perturbation of an essentially stationary process, causing a nonlinear 
phenomenon called intermittency [1]. The damage detection is investigated for 
robustness in the context of operational and environmental variability, simulated by 
changing stiffness and mass conditions, based on the assumption that sources of 
variability usually manifest themselves as linear effects on measured data. 
 
 
STATE SPACE RECONSTRUCTION AND TIME SERIES MODELING 
 

Based on the embedding theorem of Takens [4], assuming a single observed time 
series     

€ 

ν1,ν2, ...,ν N , one can reconstruct an m-dimensional state vector in the form of 
delayed versions of the time series, 

      

€ 

x i = ν i ,ν i+τ , ...,ν i+(m−1)τ( ), (1) 

where     

€ 

i = 1, ..., n  and     

€ 

n = N − (m −1)τ . The time delay embedding depends on two 
parameters, the embedding dimension m and the lag or delay time 

€ 

τ , which have to 
be chosen properly in order to yield an equivalent representation of the original state 
space. Note that     
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m ≥ 2D +1, where D is the unknown dimension of the original state 
space. Thus, the trajectory matrix (or vector space)   
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X is defined as 
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Broomhead and King [5] proposed the singular value decomposition (SVD) on a 
trajectory matrix of w-dimension state vectors (w>m) to estimate the embedding 
dimension m and assuming unit lag. An approach for damage detection can be 
constructed using the MAR model. In the context of state-space reconstruction, the 
MAR(p) model of order p is defined as follows 



      

€ 

x i = x + x i− jA j + e x, i
j=1

p

∑ , (3) 

where     

€ 

xi  and       

€ 

ex, i are the ith predicted state vector and additive Gaussian noise vector, 
respectively,   

€ 

x  is the mean vector of the variables, and     

€ 

A j is an m-by-m matrix 
containing constant coupling parameters. The order of the MAR model is determined 
based on the Akaike’s information criterion [6]. 

This approach is based on the assumption that when some source of damage 
affects the dynamical properties of a system, a MAR model with parameters estimated 
from the baseline system cannot accurately predict the attractor of the damaged 
system. The approach can be summarized in the following steps. First, as shown in 
Figure 1, a time series     

€ 

ν (t)  from the baseline condition is embedded into a state space 
in order to establish the baseline and assumed undamaged vector space   

€ 

X . Then, the 
MAR parameters     

€ 

A j are determined through the multivariate least squares technique. 
Second, and for a similar input, the baseline MAR model is used to predict any new 
test vector space   

€ 

Z from an unknown system condition in the form of 

, (4) 

where the residual errors are given by . Assuming that     

€ 

A j contains the 
underlying information of the baseline system, a hypothesis test is established that the 
MAR model will fail to predict the attractor if damage is present and the dynamical 
properties of the new system have changed. Therefore, the residuals increase and, 
under the damage hypothesis test, the system   

€ 

Z is said to correspond to a different 
class. In this approach either the visualization of the predicted states or, in a very 
generalized form, the residual errors can be used as damage-sensitive features. 

 

 
 

Figure 1. Schematic representation (for m=3) of the MAR model approach for the state space modeling. 
 

A multivariate embedding to reconstruct the state space of the structure can be 
extended from the univariate case in Eq. (1) in the form of 

      

€ 

x i = ν i
1,ν i

2, ...,ν i
l ,ν1+τ1

1 ,ν1+τ 2

2 , ...,ν1+τ l

l , ...,ν i+(m1−1)τ1

1 ,ν i+(m2−1)τ 2

2 , ...,ν i+(ml −1)τ l

l{ } , (5) 

where l corresponds to the number of sensor channels. This approach permits to 
combine structural response data measure at multiple locations into a global attractor. 
Note that the approach presented to the univariate case from Eqs. (1)-(4) is still valid 
for the multivariate one, where M=m1+m2+…+ml is the global embedding dimension.  



EXPERIMENTAL PROCEDURE 
 
The 3-story frame aluminum structure shown in Figure 1 has been used as a 

damage-detection test bed structure. The structure consists of columns and plates, 
assembled using bolted joints, and slides on rails that allow movement in the x-
direction. At each floor, four columns are connected to the top and bottom plates, 
forming a 4-degree-of-freedom system. A center column is suspended from the top 
floor to simulate damage by inducing nonlinear behavior when it contacts a bumper 
mounted on the next floor. The position of the bumper can be adjusted to vary the 
extent of impacting that occurs at a particular excitation level. (This source of damage 
intends to simulate cracks, for instance.) The mass changes consisted of adding a 1.2 
kg (approximately 19% of the total mass of each floor) to the first floor and to the 
base. The stiffness change was introduced by reducing one or more columns’ stiffness 
by 87.5%. (These changes are intended to mimic operational and environmental 
effects.) An electrodynamic shaker provides a random lateral excitation to the base 
floor. Four accelerometers were attached at the centerline of each floor to measure the 
system’s response. Acceleration time series for different structural state conditions 
were collected as shown in TABLE I. For each state, time data were acquired from 
one separate test. More details can be found in the references [7]. 
 
 
                       (a) Longitudinal view                                                                 (b) Lateral view 
 

 
 

Figure 1. Basic dimensions of the base-excited 3-story test bed structure (all dimensions are in cm). 
 
 
 
 

TABLE I. DATA LABELS OF THE STRUCTURAL STATE CONDITIONS 
Label State condition Description 

Condition#1 Undamaged Baseline condition 
Condition#2-3 Undamaged Simulated operational effects (mass changes) 
Condition#4-9 Undamaged Simulated environmental effects (stiffness changes) 

Condition#10-14 Damaged Simulated damage (gaps: 0.20; 0.15; 0.13; 0.10; 0.05 mm) 
Condition#15-17 Damaged Simulated damage (gaps: 0.20; 0.20; 0.10 mm) together 

with simulated operational effects 



ANALYSIS 
 
The trajectory in the state space represents all the states that the system can 

assume for a specific input, and its shape can easily elucidate qualities of the system 
that might not be obvious otherwise. Figure 2 shows the predicted trajectory at 
Channel 5 of the baseline condition (Condition 1) and the trajectory of three other 
conditions, namely Conditions 7, 10, and 14 along with the baseline one in overlap 
format. The assumption of linear deterministic system implies that the existence of 
other forms of attractors indicates damage. The attractor of the baseline condition 
looks “noisy” and random. Even in a badly under-embedded state space (assumed 
m=3 for graphical representations), for the damaged conditions (10 and 17) the figure 
highlights state space distortions indicative of the nonlinearities induced when the 
suspended column hits the bumper. Furthermore, the distortions are indications that 
the representation seems to unfold the dynamics of the attractor even using an 
underestimated embedding dimension. 

The average sum-of-square MAR errors for three different embeddings are plotted 
in Figure 3. The appropriate embedding was determined using the SVD technique. 
For the local embedding at Channel 5, the residuals increase significantly even when 
damage is present along with simulated operational and environmental variations 
(Conditions 15-17). On the other hand, the two multivariate embeddings assume 
distinct results. Clearly, for the global embedding (Figure 3c), the global dynamical 
attractor of the structure is not statistically reliable to detect the existence of damage. 
However, Figure 3b shows that the semi-global embedding with time series from 
Channel 4 and 5 can be used to classify the damaged conditions, even though it shows 
significant number of outliers in Condition 8 and 9 that can lead to undesirable false-
positive indications of damage. Note that in all embeddings one can see a monotonic 
relationship between the level of damage and the residuals when operational and 
environmental variations are not present (Condition 10-14). 

 

 

Figure 2. Predicted trajectory (black dots) of the baseline condition (Condition 1), and the predicted 
trajectories (gray dots) of Condition 7, 10, and 14 at Channel 5 (m=3, and p=15). 



 

Figure 3. Average sum-of-square MAR(p) errors in logarithm scale per structural condition based on (a) 
local embedding (Channel 5, m=12, and p=15); (b) semi-global embedding (Channel 4-5, M=12, and 

p=8); (c) global embedding (Channel 2-5, M=12 and p=7). 
 

The results from both multivariate embedding indicates that the multivariate 
embedding amplifies the linear changes due to varying mass and stiffness and, 
consequently, average out the effects of damage in the form of singularities in the 
signal. Additionally, notice that the residual errors can have slightly differences from 
one test to another, because the performance of this approach depends highly on the 
number and intensity of random impacts that occur in each time series. These 
differences can be specially relevant for the low level of damage, such as Condition 
10, 15, and 16 due to reduce number of impacts expected in each test. 
 
 
CONCLUSIONS 
 

The analysis in the predicted state spaces from a 3-story structure showed that the 
univariate embedding performs well. However, for multivariate time delay 
embedding, it was observed that the performance decreases with the number of 
channels used in the embedding. It amplifies the linear changes due to varying mass 
and stiffness and, consequently, averages out the effects of damage in the form of 
singularities in the signal. This possibly suggests that rather than global predictive 
power (error) as features, the MAR coefficients themselves and the optimum order 
might be a better comparative feature set. 
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